Electroviscous Dissipation in Aqueous Electrolyte Films with Overlapping Electric Double Layers

نویسندگان

  • F. Liu
  • A. Klaassen
  • C. Zhao
  • F. Mugele
  • D. van den Ende
چکیده

We use dynamic atomic force microscopy (AFM) to investigate the forces involved in squeezing out thin films of aqueous electrolyte between an AFM tip and silica substrates at variable pH and salt concentration. From amplitude and phase of the AFM signal we determine both conservative and dissipative components of the tip sample interaction forces. The measured dissipation is enhanced by up to a factor of 5 at tip-sample separations of ≈ one Debye length compared to the expectations based on classical hydrodynamic Reynolds damping with bulk viscosity. Calculating the surface charge density from the conservative forces using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with a charge regulation boundary condition we find that the viscosity enhancement correlates with increasing surface charge density. We compare the observed viscosity enhancement with two competing continuum theory models: (i) electroviscous dissipation due to the electrophoretic flow driven by the streaming current that is generated upon squeezing out the counterions in the diffuse part of the electric double layer, and (ii) visco-electric enhancement of the local water viscosity caused by the strong electric fields within the electric double layer. While the visco-electric model correctly captures the qualitative trends observed in the experiments, a quantitative description of the data presumably requires more sophisticated simulations that include microscopic aspects of the distribution and mobility of ions in the Stern layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow.

The effect of an electrical double layer (EDL) on microchannel flow has been studied widely, and a constant bulk electric conductivity is often used in calculations of flow rate or pressure drop. In our experimental study of pressure-driven micropipette flows, the pipette diameter is on the same order of magnitude as the Debye length. The overlapping EDL resulted in a much higher electric condu...

متن کامل

Electroviscous effect on fluid drag in a microchannel with large zeta potential

The electroviscous effect has been widely studied to investigate the effect of surface charge-induced electric double layers (EDL) on the pressure-driven flow in a micro/nano channel. EDL has been reported to reduce the velocity of fluid flow and increase the fluid drag. Nevertheless, the study on the combined effect of EDL with large zeta potential up to several hundred millivolts and surface ...

متن کامل

The electroviscous force between charged particles: beyond the thin-double-layer approximation.

We have investigated the hydrodynamic drag force between charged particles in electrolyte solutions, specifically the electroviscous force that arises from the distortion of the electrical double layers by the flow field. We report an improvement on the thin-double-layer theory (S.G. Bike, D.C. Prieve, J. Colloid Interface Sci. 136 (1990) 95-112), using a more accurate boundary condition for th...

متن کامل

Supercapacitive Performance of Ordered Mesoporous Carbon (CMK-3) in Neutral Aqueous Electrolyte

Ordered Mesoporous Carbon (OMC) represents an interesting material for electric double layer capacitors which has the high surface area, easily accessed ordered pore channels and lower production cost. In this work, CMK-3 as promising OMC has been fabricated using the ordered mesoporous silica SBA-15 as a template. The structure and morphology of CMK-3 are characterized by X-ray diffraction...

متن کامل

Superviscosity and electroviscous effects at an electrode/aqueous electrolyte interface: an atomic force microscope study.

Several authors observed in the past a larger than twofold increase in viscosity of organic liquids under the influence of an electric field of the order of 10(6) V/m. This was called electro viscous effect (EVE). Significantly higher electric fields, of up to 10(8)-10(9) V/m, arise in the electric double layer in solutions close to an electrode. Therefore, the viscosity can be expected to incr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2018